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ABSTRACT

The paper provides a survey of results in statistical inTerence
in systems reliability using Bernculli sampling of indiviaual components.
Particular attention is giver to the noticn of Buehler optimality and
jts implementation in such problems. Recent results of the authors
on Bueshier optimal confidence brunds on the reliability of series and
parallel systems are discussed. For series systems, these results
employ a generalization of an inequality of Sudakov. For parallel
systems, Buehler optimal bounds are obtained for small numbers of
failures using the notion of Schur concavity. Estimatcs of the optimal
hounds are obtained in those cases for which the property of Schur

concavity does not hoid.
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SIGNLFICANCE AND EXPLANATION

Parallel ane series systems arise naturally in practice in engineering
and physics. Therefore it is of substantial significance to be able to
utilize efficiently data obtained on individual components for the purpose
of obtaining an overall assessment of the reliability o7 the system. The

methods of this paper may be employed for this purpose.
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RECENT ADVANCES IN STATISTICAL METHODS FOR SYSTEM
RELIABILITY USING BERNOULLI SAMPLING OF COMPONENTS

by

Bernard Harris* and Andrew P. Soms**

1.  INTRODUCTION

In this paper we examine the history of statistical inference in systems
reliability using Bernoulli sampling of components with particular emphasis on
the notion of Buehler optimality and its role in such prcblems. In particular,
we focus on recent results of the authors which facilitate obtaining Buehler optimal
bounds on the reliability of series and parallel systems. For serfies systems,
these results employ a generalization of an inequality of Sudakov and for
parallel systems, Buehler optimal bounds are obtained using the notion of Schur
concavity when the number of failures is small. Estimates of the optimal bounds
for parallel systems are obtained for those cases in which the technique employing
Schur concavity fails.

We suppose that the system has k components and let Py §=1,2,...5k

be the probability that the 1th

component does not fail. We further assume that
the components are stochastically 1ndependen£. Let h(p],pz,...,pk) be the
probabilfty that the system does not fail. Then the problem under discussion
may be described as follows. The experimenter takes N{ observations on each
of the k comporents and records Yio the number of failures observed on the
ith component. 7 hen given this data, we wish to obtain a 1 - a Jower confidence

liMft Oﬂ h(p1’p20.¢fpk).
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Throughout the discussion, we restrict our attention to coherent
systems. These may be described as systems in which the system fails when
all components fail and the system functions when all components function.

In addition, replacing a defective component by a good component will not
cause a functioning system to fail. The reader is referred to R. E. Barlow
and F. Proschan [1] for relevant details concerning the reliability function
h(p],...,pk) and properties of coherent systems.

The problem discussed herein arises naturally in many situations
relevant to acquisition decisions. For such an illustration consider a
"one-shot device", namely, one which is to perform a specific function at a
specific time, so that the lifetime of the device is not a consideration. Then,
you are interested in assuring that the probability that the device will function
properly when it is to be used is at least a specified number.

For a second application, consider a system which is to function for a
specified length of time, known as the mission time. If the only data avail-
able is the number of failures of each component before the mission time, then
the model of this paper is appropriate.

Throughout the paper, we emphasize the specific cases of series and

parallel systems.




2. BUEHLER OPTIMAL CONFIDENCE LIMITS FOR SYSTEM RELIABILITY

We now introduce the notion of Buehler optimality with respect to the
: \ ordering function g(X), where X = (x],xz,...,xk), X; = N_i - ¥y i=1,2,...,k.
In Buehler (1957), the following principle was proposed and applied to obtaining

confidence limits for the product of two binomial parameters. This corresponds

to proposing an optimal solution to the problem of determining Tower c_nfidence

1imits for the reliability of series systems of two components.

g(X) is an ordering function if for im = ("11”‘12""”‘1k) and
; J(2) _ : A
: X = (x2],x22,...,x2k) with X3S X 12 1,25...,k, we havek

g(i(])) < g(i(z)). In the original formulation, one orders the 1,1[1(N1.+1)

sample outcomes and 1ists the corresponding values of g(X'. Then calculate
Pﬁ{g(x) > u} . (M)

This is the probability, for fixed P, of getting an outcore as good as or
better than u since g(X) is ordered consistently with the number of
functioning components observed in the sample.

If we let
Qa(u) = {p: P {g(X) 2u)} 20 . (2)

Then Q_  is a 1-o confidence region for P determined by g(X). This
o

can be extended to a 1-o Tower confidence bound for h(j) by letting

(W) = inf {h(p): Pﬁ(g(i) >u) 2al, (3)

for0< o < 1. 1t can be shown that if &(u) is any other system of lower
é confidence limits based on the ordering function g(X), then &(u) < h(u)
for all u. Further details on this optimality property and a proof cf

the above assertion may be found in Harris and Soms [8].




Unfortunately, while this does give a procedure for obtaining best
Tower confidence bounds once g(X) has been specified, this does not say how
to chcose g(X). For various kinds of systems, many researchers have proposed
different ordering functions and quite a few statisticians have suggested
procedures which have the Buehler optimality property asymptotically but
not necessarily for any fixed sample size. In addition the literature
contains many suggested procedures which are not optimal but possess some other
favorable attribute such as ease of computation, while not deviating too far
from optimality. As originally described by Buehler many procedures employing
Buehler optimality are virtually incomputable for k > 2.

Other properties which some writers have considered desirable are
exactness and conservatism. Specificaily, a confidence interval procedure is
exact if there are parameter points such that for those points, =2 a in (3)
can be replaced by equality. In the case of (3), this is true for a large
class of ordering functions, since h{(p) is continuous and the infimum
will be attained. A confidence interval procedure is conservative if the true
confidence coefficient is at least 1-a for all parameter points. Clearly,
many asymptotic approximations and other appreximate procedures will violate this.

We discuss this by looking at some specific types of systems, beginning

with series systems.
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3. LOWER CONFIDENCE LIMITS FCR THE RELIABILITY OF SERIES SYSTEMS

A natural first attempt in selecting an ordering function for

k
series systems is to choose a point estimator for h(p) = T Py Such an
i=1
estimator is the maximum likelihood estimator given by
. k Xi
hp) = I §- - (4)
i=1 "4

In the situation where the pi's are close to unity, the high reliability

case, we can write
k .
h(B) = T - (5)
= i

and if the Ni's are large, this is commonly approximated by

2 kY,
-5 ~1- ) T (6)

h(p) =
i=1 i i=1 7

i

i x

Then, under the assumption that the pi's are close to unity, if the Ni's
are all "large", this suggests replacing the original assumption of the
binomial distribution by the Poisson distribution and this alternative has
been exploited by many practitioners. In particular, 1-h(p) is
regarded as havinga Poisson distribution with parameter 2>1/Ni.

Some alternative ordering functions that have been considered are

1 aiY. +

R EACR AL (7)

a, ®(x) is the standard normal distribution

where z  satisfies !-¢(zd)

function, a; 2 *ev 2 A and a; = ("i 7 #L-)']. This choice was proposed
i

by M. V. Johns, Jr. [10] and is somevnat suggestive of (6) in that it is

a weighted rormal deviate suggested by the Poisson approximation noted

praviously.
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Buehler [2] ordered by computing separate 1 -(1-04)1/k confidence
bounds. The product of the separate confidence limits is the final
Tower confidence limit.

It should be noted that Buehler directed most of his discussion to
parallel systems and all of his approximations and numerical examples are
appropriate only for that application. However, using the duality noted later,
the general discussion in his paper can be applied equally well to both
series and parallel systems.

Closely related to the maximum 1ikelihood estimator and sometimes
employed as an ordering function are estimators of the form

k

9(®) = T

where Css Bi may be dependent on the Xi's and Ni‘s. Naturally, oy
and B, must satisfy conditions such that g(X) will be asymptotically
equivalent to the maximum likelihood estimator (5).

An example of this approach is given by A.Madansky [13], who calculated the
Wilks' 1ikelihood ratio L(X) and used the asymptotic result that -2 log L(X)
has asymptotically a chi-square distribution with one degree of freedom to
obtain a lower confidence limit to the reliability function h(a). He
compared the results obtained using the likelihood ratio to those that
would be obtained employing the maximum 1ikelihood estimator, where the
distribution of the maximum Tikelihood estimator is approximated by employing
asymptotic normality and the usual asymptotic variance for the maximum

likelihood estimator. Madansky refers to this as the linearization method.

For this case, the approximate lower confidence limit has the form



efsememeaen Lo oo o

For both of these techniques, the convergence to the asymptotic

X

- @2z, (9)
I ' i
f where
| T TP
% a0 = A8 5,0 -5 (10)
!
|

E distribution is not uniform and substantially larger sample sizes are required
§ near the boundary of the parameter space in order for the limiting distri-
é bution to provide a satisfactory approximation.
‘ Some technical improvements using the 1ikelihood ratio technique are
giver in C. Mack [12], but their relationship with thé Tikelihood ratio
procedure is not identified in that paper.

The Lindstrom-Madden method, as described in Lloyd and Lipow [11] is
of fundamental importance to this discussion., Let h(p) denote the maximum

likelihood estimator as in (5) and Tet N = min N, . Then regard N(1-h(p)) =V
1<izk

as the number of failures in N Bernoulli trial and use the usual method
of obtaining a Tower confidence 1imit for a single binomial proportion. In
general, V will not be an irteger, so that the interpretation as a binomial
random variable is not completely justified. One proceeds by interpolationin
either the tables of the pinomial distribution or in the tables of the incomplete
beta function. Some forms of non-linear interpolation have also been
proposed and investigated.

Although this procedure is widely used by engineers, it is our impression

that statisticians tended to view it with some skepticism. However, extensive

simulations and numerical computations made prior to the issuance of the

o s h

Handbook for the Calculation of Lower Statistical Confidence Bounds on

AL stk Y s o i o

System Reliability [3] suggested that it performs as well as any of the competing

LIS NS i,
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methods under investigation in the region of high reliability. In addition
the simulations strongtly suggested that it met the requirement of being
conservative, that is, that the true confidence level is always at least
as high as the nominal confidence level. A proof of this fact using as
inequality due to Sudakov [21] is given in Harris and Soms [8]. The
Lindstrom-Madden technique has been recommended for series systems in the above
mentioned handbook.

Closely related to the Lindstrom-Madden method is the method of "key
test results" introduced by K. A. Weaver [22] and extended by A. Winterbottom [23].
The maximum 1ikelihood estimate h(p) is calculated. Let ﬂj=m;n Ni'
Calculate [Nh(p)]. This of course is always an integer. Then find the usual
binomial confidence limit for N and [NR(P)1= x. If Nh(p) is an integer,
then the Lindstrom-Madden method and the key test method coincide. Since we
have shown [ 8 ] that the Lindstrom-Madden method is conservative. It follows
that the method of key tes* results is at least as conservative.

Easterling's [4] modified maximum 1ikelihood method also employs the maximum

1ikelihood estimator. From the usual asymptotic theory for maximum 1ikelihood

estimation, the estimator h(p) has an asymptotic variance given by

k 2
2 - 3h(p) o
b ~ Ly () vertiy) - an
i=1 i
Replace p; by Bi in the above, thereby obtaining (10), and set
Ny = hA ]‘hA
h(p) n ' (12)

Then regard n as the binomial sample size with n h(ﬁ) successes observed
and obtain the lower confidence interval for a single binomial parameter, inter-

polating as in the Lindstrom-Madden method.
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A further modification is suggested in which n and x are replaced
by the next integer. This is designated as the MMLI method. The suggestion
that this may be satisfactory is deduced from an examination of the
deficiencies noted in the Tinearization (maximum likelihood) method by
Madansky.

In a related investigation, J. L. Epstein [5] considered the problem
of confidence sets for the product of two binomial parameters. This can be
interpreted as either a parallel or a series system in the reliability
context. Epstein was motivated by some biomedical applications in which
the assumption of high reliability for each of the components is not as natural
as it is for the engineering reliability context.

In studying this question, Epstein considered the two ordering functions

X, X (X{+1)(X,+1)
g‘l\x) - N] ? ’ gz(x - N]Nz

He concluded that the second was preferable to the first, since the partition
of the sample space induced by the second is finer than that induced by the
first. This effect is particularly pronounced when either X] or X2 is
zero. This is not,however, a significant factor for series systems with high
reliability. It is, nevertheless, quite important for parallel systems with
high reliability, as we shall subsequently observe.

Apparently ideas similar to those deduced by Epstein motivated the
development of the technique suggested by Sandia Corporation and referred to
as CONLIM [6].

let h(p) be the reliability function of any coherent system. Then let

g(X) = h(p) , (13)
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where p = (ﬁ1""’ﬁk) and
By = (X+1)/(N+2), T2 i sk . (14)

For the series system, this reduces to
k

g(X) = =1
t=1

(X;+1)/ (N, +2). (15)
The particular choice of 6i leads one to suspect that this was motivated
by Bayesian considerations employing independent uniform priors on 0 < P; < 1.
The computer program which uses (13) to calculate lower confidence bounds
for system reliability is capable of dealing with a large variety of systems,
but unfortunately, a substantial amount of computer time is often required
in order to calculate the lower confidence limit.

The Poisson approximation methods, alluded to earlier, have principally
been exploited by statisticians from the Soviet Union.

In particular, Pa lov {19] used the ordering function (6), by defining
the parameter for which the confidence 1imit is sought as
A

R (16)
Ny

©
1
2! >
it
+
Zl >
N
-+

1 2
Then, choose M so that MN],---,MNk are all approximately integers.

This results in

Mo = MA, + MZ"Z oo H ML (17)

and T MiYi is a suitable statistic for estimation of the parametric function
(17) and therefore can be easily employed to get confidence bounds on p .

As a specific illustration, consider k = 3, N] = 600, N2 = 300,
N3 = 100. Then, from (6) ,
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and

600(1 - h(p)) ~ 500(*1 + 24 A3) ,
600 300 700

so that Y.I + 2Y2 + 6Y3

h(p) and for other inferential purposes.

is an appropriate statistic to use for estimation of

Another method for employing Poisson approximations has been given
by Mirniy and Soloviev [18]. This technique may be described as follows.

Let k
109 by

k i=1
h(p) = 1 p; = e . (18

For p; near one, as is appropriate fer high reliability,

log p; ~ - {1 -p;) .
Let 2, = Ni(1-pi), i=1,2,-++,k. Then construct an upper confidence
n
limit for 7§ ki and an approximate upper confidence limit for
i=1

K k
=3 (1-p.) - .I. A/Ny
e-,:] 1 ~e i=] (]9]

is given by max(-Z Ai/Ni), where the maximum is over the set
K :

{.Z PR A}, A the upper confidence limit referred to above. This

p;;ledure is completely analogous to the procedure using (2) and (37), except

that an upper confidence bound is being constructed for the unreliability.
This brief survey makes nc pretense of being complete. In particular,

the reader is referred to the paper by Joan Rosenblatt [20], which contains

a survey of many of the early techniques employed for this problem. Likewise,

the book by N. Maun, R. E. Schafer, and N. D. Singpurwalla [14] should be




noted. In particular Chapter 10 is relevant to this discussion and a

commonly employed method, called the AO method is described therein. Also
Bayesian methods- such as these proposed by D. Mastran [16] and D. Mastran
and N. D. Singpurwalla [17], have been omitted, since these are obtained
using a different set of principles than the methods which are compared

in this paper.

Given this large number of available techniques, how does one make a

selection? To answer this question, in the course of the preparation of
the Handhook for the Calculation of Lower Statistical Confidence Bounds on
System Reliability [3], an extensive investigailion of various procedures was

carried out. This investigation employed both simulation mathods and

T IR TSI T ki)

numerical calculations. Among the requirements sought for were conservatism

of procedures. However, wnile procedures that were found to be optimistic
(non-conservative) were regarded as not satisfactcry, attention was paid as well
to accuracy, namely, that the true confidence coefficient should be as close

to (1-a), the nominal confidence coefficient, as possible. Ease of computation
was also considered. Finally, performance of the statistical procedures for high
reliability was regarded as being of much mcre significance than performance at
jow reiiabilities.

This investigation established amnng other things, that the AC method and
Easterling's two propcsals are non-conservative. CONLIM satisfied every reauire-
ment with the exception of ease of computation.

A surprising conclusion of this investigation was that the Lindstrom-

Madden method was found to be conservative, but not excessively conservetive.

In short, it was the opinion of the cormittee entrusted with the preparation
of this handbook, that the Lindstrom-Madden method should be adopted for use

and be the weothed reco onded in the hardbock.
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Since the investigaticn undertaken in preparation of the handbook employed
simulation and the computation of a large number of numerical examples,

a theoretical explanation for the impressive performance of the Lindstrom-

Madden method is needed.

The answer to this is provided in Harris and Soms [8] and depends

on the application of an inequality of Sudakov [21]. The description of

é { these results fo11ow.‘
E } Let
- p
s . r-1 -1
E ! - = »
§ : Ip(F,S) B(r.s Lﬂ (1 f) dt
g .
3 Then, it i3 well known that
- . f (e"7'a" = 1 (a-yay+1). (20)
i=1 P
% Let u(n,y.n) satisfy
g
g = -
% a Iu(n,y,a)(n ¥,y+1) (21)
2 and assume that u] < N2 < ... £ Nk' Let
. k.
g(X) = T (X./N,),

i i=1

{ and let

% ' R k XOi

2 . 1= 1

% where x is the observed velue of X%' Then Sudakov showed that

oi

u(N],y],a) +b - U(N],[y]],a), (23)

T i i, oAy

L}
t,

C L e pre———
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where b is the 1-o Buehler optimal lower confidence 1imit for g(X).
Now u(N].y],a) is the Lindstrom-Madden solution. Thus, it follows that if
y s an integer, the Lindstrom-Madden solution is optimal.

in Harris and Soms, a generalization of the Sudakov inequality was
employed to show that (23) holds when N is computed for any of a large
class of ordering functions in addition to the maximum likelihood estimator.

This class includes

- Y.
g(X) = ] =L 1 ’
i=1 Ny

1

(S b g

g(X) = H(Xi + ai)’ Gi > 0,

and Ni4105 2 Quq Moo and the choice (7) employed by Johns. In addition,
an improvemen: on the upper bound in (23) was obtained. In short, if
¥ = max {y,:9(%) < 9(F.)s ¥, = N = N.-x_.) (24)
Yi = max {y;:9(¥) < 6(Fg)s vy = Ni=xps yop = Ny=xg,
== *=
and y = (0,...,0, yi,...,yk), ¥y = ¥y then

u(N,,¥y,a) < b < min u(N.[yf],a), (25)
1’71 j i~

holds for a class of ordering functions, which includes many commonly in
use. Forthe relevant details, see Harris and Soms. The lefthand side of

(25) may be reyarded as a generalization of the Linstrom-Madden method.
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4. LOWER CONFIDENCE UNITS FOR THE RELIABILITY OF PARALLEL SYSTE!S

To some extent, there is a duality between series and parallel systems.

For a parallel system,

k

1h(B) = Mgy = T (1-p) . (26)

Py
" x
w—d

Thus, interchanging reliability and unreliability, success and failure,
Py and 1—p1=q1 converts any probabjlity statement about a series system |
into ¢n "equivalent" statement about a parallel system. Unfortunately, this
duality will not extend as readily to the statistical inference aspects.
The reasons are that the above duality will result in conservative confidence
bocunds being changed into non-conservative bounds. Also high reliability
becomes high unreliability, an area of 1ittle interest to practitioners.
Fruther, the Poisson approximation techniques employed in the study of one
type of system will not carry over to the other,.since small faflure probabilities
become small success probabilities, again a situation‘of virtually no interest.
Nevertheless, some parts of the previous discussion for series systems does
carry over to parallel systems.
For this reason, it is convenient to replace the problem of finding
a Tower confidencellimft for the reliability by the problem of finding an
upper confidence level for the unreliability. Then, to make the analogy
with serfes systems clearer, we will denote the unreliability by h(p) and
the ordering function based on failures by g(%), where % denote faflures,
that is

l'h(ﬁ) * ﬁ(b), Ni-xi » x" ’

and G(%) will often be an estimator of the unraliabilfty.
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Buehler's [2] method of computing separate 1-(1-a confidence
bounds carries over, however, the Poisson'approximations that he uses to get
specific numerical values are valid only for parallel systems.

Madansky's [13] method using the Wilk's likelihood ratio statistic
is equally valid for parallel systems, since in employing a continous
approximation, namely the chi-square distribution, the transference from
conservatism to optimism does not take place. . Thus, all comments about the
use of the technique for series systems apply essentially unchanged for
parallel systems. Similarly, the comments about use of the asymptotic theory
for the maximum likelihood estimator remain unchanged.

The observations of Epstein [5] that the ordering functions
(Ry+1) (R +1)/N)N, " is preferable to R{%,/N{N,  is far more relevant to
parallel systems than to series systems. To see this, note that the maximum
Tikelihood estimator of 151 ay is 1§1 Xi/igl Ni’ where Xi is the number
of observed failures of tke ith coniponent. In the case of high reliability, Xi
will tend to be small and one would like to believe that it will frequently be
zero. The difficulty with an ordering function such as ; (31/N1) is that
for k= 2, the sample outcomes X] =0, 22 = 0 1{s not digtinguished from
il = 0, Xz = 100, when N, = N, = 100. More precisely, the partition induced
by g(X) 1s then very coarse when at least one Zi is zero. Consecuently, the
use of a finer pertition for the high reliability situation may produce less
conservatism and greater accuracy. Presumably, s'm’lar considerations
motivated the choice of 6f for the CONLIM metho., which in this case gives

. k -~
QX =i (R #2) - (27)
A soivwhat different technique for obtaining an upper confidence 1imit on

n(p) is given in Harvis [7]. whore the  expenential family theory s usod to
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obtain the uniformly most accurate unbiased upper confidence 1imit. However,
this technique does not have a simple description in terms of an ordering
function.

The specific question of Buehler optimality for parallel systems was con-
sidered in Harris and Soms [9]. There the following results were obtairned.

Let

g(X) =
i

Hax

: (ii+d), 1<d<1.5, (28)

Then replacing the binomial distribution by the Poisson approximation, for
Z any failure vector with Xy = 5 forsome 1s1<k and Xy = 0

otherwise, and letting
A2 = {30: g(xo) s g(2)} (29)
where
Pi{g(R) s g(x )}

{fs a Schur-concave function of - 2n A1. {f=1,2,...,k, where X is the parameter
vector for the Poisscn approximation obtained by letting xi = Niﬁi’ i=
1,2,...,k). The reader is referred to A. W. Marshall and 1. Olkin [15] for

details on the properties of Schur-cohcave functions. This enables one to
conclude that for 20 € Az the Buehler optimal upper confidence 1imit for

k
II1 xi is given by the solution of

Pi*fg(i) s g(io)) =q, {30)

where i* 2 (a,....a)., namely has all components identical. This Schur-

concavity argurent wav be extended to other ordering functions than (28'. in




LR L L b

O e TR RN ITERET s T

18

particular, the choice used by Buehler [2] also satisfies the necessary
conditions.

Unfortunately, if the observed vector of failures lies cutside
of Ai’ this conclusion does not hold for the ordering function {23).
Here, upper and lower bounds for the Buehler optimal upjer confidence

limit have been constructed. The reader is referred to the original

paper for details. [9].
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